
Technical Report  1 
 

 
 
 
 
 
 
 

 
 

Technical Report 
 

 
 
 
 
 

Kent State University/Lemur Remote Toolkit (KLRT)1:  
 

A toolkit for remote collection of client-side search logs 
 
 
 
 
 
 
 
 
 
 
 
February 20, 2012 
 
Catherine L. Smith* 
Guan Wang^ 
 
Kent State University  
* School of Library and Information Science 
^ Department of Computer Science 

  

                                                           
1
 The toolkit is an adaptation of the Lemur Query Log Toolbar, developed at The Center for Intelligent Information 

Retrieval (CIIR) at the University of Massachusetts, and the Language Technologies Institute at Carnegie Mellon 
University, and available on SourceForge at http://sourceforge.net/projects/lemur/files/Lemur%20Query%20Log/  

http://sourceforge.net/projects/lemur/files/Lemur%20Query%20Log/


Technical Report  2 
 

1. INTRODUCTION AND OVERVIEW 
This report describes the Kent State University/Lemur Remote Toolkit (KLRT). Our objective with this 
report is to document the components and functionality of the toolkit, and to provide general 
information on the ways in which it can be adapted for various research designs. The target audience for 
the report is researchers who are familiar with the use of client-side logging for the study of interactive 
search behavior. The report will be most useful for those interested in deploying the toolkit, including 
those who will be adapting and implementing the code.  

The KLRT is a modification and extension of the Lemur Query Log Toolbar 2.1 (LQLT)2. The toolkit 
facilitates collection of client-side data during search interaction in the Firefox 3.6 browser (FF). The 
toolkit includes (1) a browser add-on that logs browser events, (2) a back-end that collects and manages 
uploaded log data, and (3) an optional website structure that may be coupled with the add-on in order 
to control the add-on and administer study protocols.   

We developed the KLRT to meet several objectives. Most importantly, we wanted a reusable tool for 
data-collection that we could adapt for different types of research designs. For designs that use assigned 
search tasks, we needed a way to couple administration of the study with the functionality of the LQLT 
add-on. We did this by designing a website structure for control of add-on functions, and adding new 
functions. We also needed tools we could deploy in completely remote studies (Smith, 2011), so that 
research subjects could easily download and install the add-on without assistance. For remote studies, it 
was important to have one installation procedure that worked easily across all Windows operating 
systems, so we built the toolkit using the Firefox version of LQLT 2.13. Finally, we needed to provide 
subjects with reliable controls for protecting their privacy throughout a study. We did this by adding 
new functionality and interface components that enable control of the add-on.  

The KLRT consists of three main components: a browser add-on, a website, and a backend:  

Add-on. The add-on comprises (1) client-side logging functions, (2) a toolbar interface that 
allows subjects to control logging and upload functions, and (3) control functions that work with 
corresponding website controls. The add-on can be adapted for different study designs, 
however the current version is not truly modular, thus it is not configurable in the traditional 
sense. The system may be adapted by enabling or disabling optional functions within the code. 
We’ve reused functions available in LQLT 2.1, however, we have made modifications and added 
several new functions. The current 4.0 version of the add-on does not run on newer releases of 
FF (4.0 and above; see section 4.5 for discussion). We discuss the add-on in section 3.1. 

Website. The toolkit includes a website structure for running remote and laboratory studies. The 
KLRT add-on includes a set of website control functions that may be used to administer a 
research protocol. For example, these include:  (1) subject identification, (2) validation of add-on 
installation, (3) controlled add-on activation, (4) collection of task-related data via forms, (5) 
automatic initiation of log uploads, and (6) validation of add-on uninstall. The website structure 
has four basic parts: (1) add-on installation, (2) instructions for study protocols, (3) an interface 
for administration of study protocols, including assignment of experimental treatments and 
search tasks, and (4) instructions for uninstalling the add-on (see Figure 1, below). The website 
and control functions may be used in various combinations, and may be customized to meet 

                                                           
2
 http://www.lemurproject.org/querylogtoolbar/  

3
 A version of LQLT 2.1 is available for Internet Explorer 

http://www.lemurproject.org/querylogtoolbar/


Technical Report  3 
 

 

Figure 1. KLRT Website Structure 



Technical Report  4 
 

specific protocol requirements. The website uses php and a MySQL database. We discuss the 
website in section 3.2. 

Backend. The backend is a server application running a MySQL database and optional parsers. 
The KLRT uses the backend functions provided with the LQLT, however, we have modified the 
backend. As currently configured, the backend works well for small-to-moderately sized studies, 
but it is not intended for web-scale data collection. The backend is discussed in section 3.3.  

The remainder of the report has four parts. Section 2 scans related prior work. In section 3, we describe 
the components of the KLRT in detail. Section 4 concludes with a brief discussion of limitations of the 
current version of the toolkit, and directions for future development. References are listed in section 5. 

2. BACKGROUND and PRIOR WORK  
For many research questions in human-computer interaction/information retrieval (HCIR), access to 
client-side logs is essential. Client-side logs are contrasted with server-side logs, which only record 
requests made to a central server. Client-side logs record interaction on the users’ machine, as well as 
requests made to any server. Client-side logs may be the sole source of data in a study. However, when 
supplemental data such as eye-tracking are required, logging functionality becomes a component of a 
larger more comprehensive research system, such as the Poodle framework of Bierig, Gwizdka, and Cole 
(2009).  

In this section of the report, we briefly scan prior work describing various types of client-side logging 
systems, and their deployment in studies with various research designs (see Appendix 1,Table 1). Our 
objective is to place KLRT in the context of these systems and studies. First, we discuss several 
characteristics of the systems. We then review the ways in which the systems have been deployed, and 
the basic features of the research designs in which they have been used.  

2.1. System characteristics. 
Client-side research systems may be categorized on the basis of the types of data collected, the method 
of implementation in the browser, and for experimental protocols, on the type of administrative control 
mechanism used (see Appendix 1,Table 2).  

2.1.a. Types of data collected.  

A client-side log may contain only clickstream data (requested urls, with timestamps and identifiers), or 
it may also contain more detailed interaction data. Typically, the log contains records of browser events 
(e.g. page loads, scrolling, button presses), however, data about the state of the machine and other 
applications may also be captured (e.g., screenshots of a machine’s display). In many studies, logs are 
supplemented with additional data, which may be obtained directly from research subjects (e.g., via 
questionnaires), or it may be collected from the environment (e.g., html of requested webpages).  

2.1.b. System implementations. 

Browser add-ons. Many studies use data collected from commercial toolbar add-ons. Typically, 
commercial toolbars are distributed by search engines, either directly, or in partnership arrangements 
with application providers (Baker, 2004). Commercial toolbars provide enormous volumes of clickstream 
data, which is generally collected without supplemental information. Beyond commercial toolbars, add-
ons are often designed as small applications that run in the browser, capturing browser events and 



Technical Report  5 
 

supplemental data in forms, for example. Add-ons may also be used as one component in an 
architecture, for example, in coordination with a proxy server. 

Custom browsers. Alternatively, client-side data may be collected using a custom browser, which may 
operate as a single, integrated application for logging, control of experimental factors, and collection of 
supplemental data.   

Injected client-side script. Where a study requires client-side data for users interaction with only a single 
server, client-side logs may be generated on a page-by-page basis. In this case, scripts that invoke 
logging functionality (e.g., event detection, recording, and transmission to the server) may be inserted 
into pages before they are sent to the user.    

System-wide logging applications. A stand-alone logging application may be used to record interaction. 
Fenstermacher (2003) proposed a system with access to events occurring across the operating system of 
users’ machines, so that interaction with every application and process could be recorded; there is no 
evidence that the system was ever deployed. Kelley (2005) used a commercial logging system that 
recorded events across all applications on the machine. 

2.1.c. Control method 

Proxy-based controls. A proxy server may be used as a component in a client-side data collection system. 
Generally, in HCIR research this is done for experimental manipulation. The proxy may simply log 
clickstreams, it may log additional data such as webpage html, or it may intercept messages and pages. 
Manipulations can be used to change intercepted outbound requests, or to alter intercepted inbound 
pages, all without the explicit knowledge of research subjects. A proxy may be invoked using an add-on 
or a custom browser.  

Website controls. In client-side logging, website controls may have several purposes. For completely 
remote studies, they may control download, installation, and activation of an add-on. They may also be 
used to control experimental factors and tasks, and to collect supplemental information, such as 
demographics and responses to questionnaires. KLRT provides the option for website controls.  

2.2. Research designs 
The systems described above have been deployed in support of a broad range of research designs (see 
Appendix 1, Table 2). The design of a study may affect subject recruiting and retention. A potential 
research subject’s decision to participate is affected by the place in which the study occurs, and the 
means required for using the experimental system. Once a subject has been recruited, subject retention 
is affected by the types of tasks encountered during the study, and the obtrusiveness of the 
observations. We review these factors as they relate to the design of the system.  

Installation procedure. Client-side logging software may run on a machine in a laboratory, or it may run 
on research subjects’ own machines. Here we report on systems designed primarily for deployment on a 
subject’s own machine. In studies of this type, a researcher may install the logging software for each 
subject, or, in a completely remote study subjects must download and install the software on their own. 
Search engine add-ons are downloaded and installed when users install associated application software 
such as a toolbar. Users grant permission for recording of their search activities when they “opt-in” 
during installation of the application software. In contrast, in academic research, potential subjects must 
receive a detailed and often complex IRB-approved disclosure, and then consent to participate before 



Technical Report  6 
 

downloading an add-on. KLRT may be used in a laboratory or in remote studies. It is designed specifically 
for studies requiring IRB approval.

Type of task. In both longitudinal and cross-sectional designs, search tasks may be assigned to research 
subjects, or subjects’ own in situ search may be observed. In situ tasks may be observed unobtrusively, 
or subjects may be asked to provide supplemental data in coordination with their tasks. KLRT may be 
used for any of these types of designs. 

3. KLRT COMPONENTS 

3.1. Add-on. 

3.1.a. Overview 

The add-on has a simple toolbar interface that allows subjects to control logging and upload functions. 
The interface is written in XUL, and the add-on’s functional code is written in JavaScript. The code can be 
adapted to activate or disable optional interface controls and functions. By adapting the add-on code, 
different types of protocols and experimental designs may be facilitated. Add-on processing is activated 
by the set of browser events listed in Table 5, and it is controlled by a set of event handler functions. 
Below we describe these components, providing details where we have added new functionality or 
made changes to LQLT 2.1.  

3.1.a.i. Toolbar Interface. 

There are nine available toolbar controls in the interface. All the controls are displayed in Figure 2, 
however, when setting up the toolbar for a specific protocol, optional controls may be removed from 
the interface in order to match the requirements of a study design. 

Each control is activated by simply clicking its icon. Clicks generate browser events, which are detected 
by the add-on (see section 3.1.c below). Table 1 lists each control, its function, and options for 
configuration. Start/Pause turns the logging function on and off. View opens a display of either the 
activity log (see Figure 3) or the search log (see Figure 4). List opens a small window to display the 
whitelist (described below). Disable initiates a “failsafe” mechanism that allows subjects to withdraw 
from the study by simply clicking the button and confirming the intent to quit. When the add-on is 
disabled, uploads are prevented and add-on functions cannot be restarted, even if the add-on is 
reinstalled. Subjects click New Search when starting a new search objective. This opens a small form 
window for data collection (see Figure 6). Values collected in the form are written to the search log. 
Subjects have the option to bypass the form. Clear empties all content from both the activity log and the 
search log, after the subject confirms the intent to clear. Upload starts the upload of both logs, after the 
subject confirms the intent to upload. Settings opens a small form window that allows subject to set a 
preferred daily upload time (see Figure 7). Help displays a pop-up box with contact information for help 
with the study. 

 

Figure 2. Toolbar interface 

 

  



Technical Report  7 
 

Table 4. Toolbar interface 

Icon Function Options 

 
4
 

Starts and pauses the logging function; 
when start button is active (blue), the 
pause button is grey and logging is off; 
when pause button is active (blue), 
logging is on and the start button is 
grey 

Default mode for Firefox 
restart defined at 
configuration: can start in 
started, paused, 
deactivated, or disabled 
mode 

 
4 

(see Figure 3 and 4 for examples of log 
displays) 

Opens small drop-down menu with 
choice to display contents of either 
activity log or search log; display opens 
in the active browser tab  

n/a 

 
5
 

(see Figure 5 for example of whitelist 
display) 

Opens a small window to display 
whitelist search system urls 

Whitelist defined at 
configuration; whitelist 
not editable by user 

 
6
 

 

“Failsafe” quitting mechanism allows 
users to quickly withdraw from the 
study; it disables all add-on functions 
and prevents uploads, restart of 
logging, and reinstall or activation of 
the add-on; a pop-up box asks user to 
confirm disable 

n/a 

 
7 

(see Figure 6 for form box) 

Opens a pop-up box that asks users to 
describe search objectives; form values 
are written as a single string to the 
search log; users may “ignore” the form 

Text and form fields may 
be changed at 
configuration 

 
4
 

Deletes both the “activity log” and 
“search log”; a  box asks user to confirm 
clear 

n/a 

 
4
 

Initiates a confirmable upload of both 
logs to the backend server; a pop-up 
box asks user to confirm upload  

n/a 

8
 

(see Figure 7 for form box) 

Allows user to set a preferred upload 
time; used in longitudinal designs to 
create a periodic upload reminder 

Set upload time interval  

 
4
 

A pop-up box displays contact 
information for help 

Text in message may be 
changed at configuration 

 

                                                           
4
 included in LQLT 

5
 adapted from Russell and Oren (2009),  renames the LQLT “search engine” function as “whitelist”  

6
 new function in KLRT 

7
 adapted from Fox et al. (2005), new function in KLRT 

8
 new function in KLRT replaces the LQLT “settings” function 



Technical Report  8 
 

 

Table 5. Logged browser events 

Event name Event description Related functions 

AddTab add tab log activity event  

Blur blur log activity event  

CtrlC control c (copy) log activity event  

Focus focus log activity event  

Hide hide tab log activity event  

LClick left click log activity event  

LoadBub load bubbled  log activity event  

LoadCap load page (captured)  log activity event 

 website control processing (3.1.c.ii.a) 
o update whitelist 
o start add-on 
o start non-confirmable upload 
o disable add-on 

 blacklist processing  (3.1.c.ii.b) 

 whitelist processing  (3.1.c.ii.c) 

 search session processing  (3.1.c.ii.d) 

MClick middle click log activity event  

PauseLogging pause logging function  log activity event 

 set state to paused and reset start/pause buttons (3.1.c.iii.a) 

PopUPSearchbox open "search purpose" box  log activity event 

 search session processing  (3.1.c.ii.d) 

 new search  (3.1.c.iv.a) 

RClick right click log activity event  

RmTab remove tab log activity event  

ScrollBegin begin scroll position log activity event  

ScrollEnd end scroll position log activity event  

Search submit query string  log activity event 

 blacklist processing  (3.1.c.ii.b) 

 whitelist processing  (3.1.c.ii.c) 

SelTab select tab log activity event  

Show show tab log activity event  

StartLogging start logging function  log activity event 

 set state to started reset start/pause buttons (3.1.c.iii.b) 

ViewLog click view log  log activity event 

 display log in browser window  (3.1.c.iii.c) 

Events that trigger processing in addition to an activity log entry are in bold 

 



Technical Report  9 
 

 

Figure 3. Activity log display for subject, accessed via View button 

 

Figure 4. Search log display for subject, accessed via View button

 



Technical Report  10 
 

 

Figure 5. Whitelist 

 

Figure 6. Pop-up form box for recording search 
objectives 

 

 

Figure 7. Pop-up form box for setting preferred 
daily upload 

 

3.1.a.ii. Logging.  

KLRT uses the logging functions found in LQLT 2.1, with the exception of blacklist processing, which we 
have modified (described below). The activity log (see Figure 3) records the set of FF browser events 
listed in Table 5. We have added logging for view log events, and for the display of the new search form. 
The search log (see Figure 4) records source code for any page loaded from the url/paths listed in the 
whitelist (see Figure 5), along with the timestamp/ID of the query request. The search log also records 
values collected in the new search form.  

3.1.a.iii. Upload.  

The KLRT uses the upload functions provided with the LQLT 2.1. 

3.1.b. Add-on installation, initialization, and activation status 

3.1.b.i. Installation files.  

Like LQLT 2.1, when installed, KLRT creates a directory (123_temp) and two log files (activity log: 
123_temp1 and search log: 123_temp2) in the user’s Mozilla Firefox profile. Two parameter files 
(defaults.js and configuration.js) are also installed, along with other source code. The first, defaults.js 
contains the minimal default configuration for LQLT 2.1. The second, configuration.js, contains static 
values for the specific configuration of the add-on.  

  



Technical Report  11 
 

3.1.b.ii. Initialization. 

The add-on is initialized when FF restarts after installation. Whenever FF is restarted, the add-on tries to 
read values from variables in the FF preferences file prefs.js. If the variables are not found in prefs.js, 
initial default values are read from defaults.js and written to prefs.js. As the add-on is used and initial 
values are changed, the updated values are stored in prefs.js. Some of the variables stored in prefs.js 
include, whitelist urls ("knownSearchEngines"), the add-on’s status (“lemurlog_g_enable”), and the start 
time for the next automatic upload ("nextTimeToAutoUpload"). Variables with static values are stored in 
configuration.js, for example, the address of the backend server ("serverBaseURL"). Note that 
uninstalling the add-on does not erase the values stored in the prefs.js. In order to reinstall the add-on 
with new values in defaults.js, the user must delete the prefs.js file before the re-installation. 

3.1.c. Event handler functions 

The add-on uses two main code files for event handling (logtoolbar.js and util.js). Main processing, 
including event detection and major functions, are in logtoolbar.js. Utility functions (most from LQLT 
2.1) and the website control functions are in util.js.  

KLRT uses the event handlers found in LQLT 2.1, some of which we have revised and adapted. We have 
also added new functionality. The event handler listens for browser events listed in Table 5. The add-
on’s functions are triggered only when an event is detected. Two functions are invoked by any event: 
checking the add-on’s activation status, and checking a timer for automatic periodic uploads (see section 
3.1.c.i). For most event types, the only other function invoked is a write to the activity log, however, six 
event types are also associated with additional functions. Several of the event types are not standard 
browser events, but are generated during add-on processing. StartLogging and PauseLogging events 
switch the start and pause interface buttons, and the add-on’s state. ViewLog events open the 
requested log file for display in the active browser window. Section 3.1.c.iii describes these three events. 
LoadCap events (a page-load in the browser) trigger several important functions (see section 3.1.c.ii). 
Search events are logged when a LoadCap event occurs under certain conditions. KLRT includes two  
new event types: Disable and Searchbox. Disable events change the add-on’s status, and clear the log 
files. Searchbox processing controls a timer, and collects supplementary data from the user via a popup 
form. Section 3.1.c.iv describes these two events. 

3.1.c.i. Functions triggered by all event-types 

3.1.c.i.(a) Activation status check. 
The KLRT add-on may be coded to install in one of three activation states: started, paused, or 
deactivated (see section 3.1.iii). The activation state can be changed by a button event or by 
website control processing. It is switched to a paused state when the Pause button is clicked, 
and to a disabled state when the user confirms a click on the Disable button. KLRT uses a status 
code in the user’s prefs.js file to maintain its activation state across all instances of FF.  

Activation status check is used to maintain KLRT’s state across FF instances. When KLRT detects 
any event, the add-on’s status code is always checked, as functionality is dependent on the 
activation state. For most event types, no action occurs if the add-on is deactivated, paused, or 
disabled, however, there are several functions that may be initiated even when the add-on is in 
these states.  

  



Technical Report  12 
 

3.1.c.i.(b) Periodic upload. 
For studies that don’t use a controlling website, only the user can trigger a log upload from the 
client. The periodic upload function is particularly important for studies of this type. The 
function allows the user to set a preferred time for a daily upload. Two variables control the 
procedure:  

"autoUploadIntervalTime" defines the upload period. Currently the default 
configuration uses a 24-hour upload interval (86, 400 seconds); this may be changed to 
any value. 

"nextTimeToAutoUpload" records the unix time for the next auto-upload.  

Periodic upload processing is invoked after any event is recorded in the activity log. The add-on 
calls the function "lemurlog_checkAutoUpload”. If the current time exceeds 
"nextTimeToAutoUpload", a confirmable upload event is triggered and the 
"nextTimeToAutoUpload" variable is incremented by the "autoUploadIntervalTime". If more 
than 48 hours have elapsed, only one upload event is triggered. When the event is triggered, a 
box pops up asking the user to confirm to start the upload. Users can skip the upload by clicking 
a button.  

3.1.c.ii. Functions triggered by page-load detection (LoadCap)   

Like LQLT 2.1, KLRT listens for completion of page loads in the browser. In KLRT, we have added website 
control processing, which uses special urls to trigger add-on functions. We have disabled the blacklist 
interface in LQLT 2.1 and replaced its functionality with simple blacklist processing for determining 
whether a url should be logged. We use the unchanged LQLT 2.1 SearchEngine function for what we 
term whitelist processing. We have also added search-session processing that detects search sessions 
and collects supplemental information from users. Below we describe the processing and sequencing of 
these functions. 

3.1.c.ii.(a) Website control processing. 
KLRTK includes a website structure that may be coupled with the add-on to trigger a set of 
control functions (the website structure and server-side processing are detailed in section 3.2 
below). Website control processing is invoked after a page-load is detected. A simple string 
match determines whether a triggering url has been detected. The website can trigger four 
basic functions: updating the whitelist, starting the add-on, disabling the add-on, and uploading 
the logs. None of these events are logged.  

Update whitelist.  
Over the course of a long longitudinal study, it may be necessary to change the search-
string urls in the whitelist. We use a simple web interface for this purpose; users login to 
the website to activate the update. The whitelist is updated when a triggering url is 
detected. The new search-string urls are passed to the add-on by appending each to the 
triggering url, with each separated by '@'. When triggered, the function 
"lemurlog_update_whitelist" parses the triggering url to extract the new search-string 
urls. These are then appended to the whitelist in the prefs.js file, and the browser is 
redirected to the triggering url without the appended items.  

  



Technical Report  13 
 

Start add-on.  
When triggered, the function "lemurlog_ToStart" puts the add-on in the “started” state, 
and then calls the function that resets the start/pause buttons. We use this function to 
activate the add-on when it is installed in the “deactivated” state (see section 3.2.b.iii, 
below), or to automatically start logging when a task-administration page is loaded (see 
section 3.2.b.iv, below).  

Start non-confirmable upload. 
We use this function for studies in which users are assigned search tasks through a 
controlling website. The upload is triggered when server-side processes confirm that the 
task has been completed. The upload trigger is dependent on the user entering a 
specific sequence of webpages, so that an upload cannot be started by requesting the 
triggering url. When triggered, "lemurlog_IsTask2URL" starts a log upload function that 
does not ask the user to confirm. See section 3.2.b.v, below, for a description of website 
processes.  

Disable add-on. 
We use this function in a website-controlled process that verifies that the add-on has 
been uninstalled. When triggered, "lemurlog_IsClearTime" disables the add-on without 
requesting confirmation from the user. The disable function is described in section 
3.1.c.iv.b, below.  

3.1.c.ii.(b) Blacklist processing. 
In order to protect the privacy of research subjects, we do not log any urls with a secure 
connection (i.e. https connections), nor any urls containing the string “mail” (adapted from 
Russell & Oren, 2009). Such a url is termed nonrecordable. There is one exception to the secure 
connection rule. If the url is "https://www.google.com/search?" it will be deemed recordable. 
This is required because users logged into Google accounts receive all search result pages via a 
secure connection. 

Blacklist processing is invoked after a url is processed by the website control handlers; urls are 
examined by a function called "lemurlog_IsRecordableURL", which uses a string match to check 
the url for "https" and “mail”. If the url is recordable, its value and the "LoadCap" event are 
written to the activity log. After the record is written, whitelist processing is called.  

The current blacklist code contains a function called "washAndRinse", which originated in LQLT 
2.1. This function has been modified in KLRT, but it is currently disabled. See section 4.2 for a 
discussion of future work on this function.  

3.1.c.ii.(c) Whitelist processing.  
KLRT whitelist processing uses the unchanged LQLT 2.1 “SearchEngine” processing to detect and 
log search engine results pages, however, unlike LQLT 2.1, users are unable to alter the list of 
search systems displayed in the interface. Whitelist urls are hardcoded in the KLRT configuration 
file. After a "LoadCap" event is recorded, the add-on function "lemurlog_IsSearchURL" reads the 
prefixes of whitelist urls from the LemurLogToolbarConfiguration structure, and compares them 
with the current url. If the current url matches at least one whitelist url, the function returns 
true. The Search event is then recorded in the activity log. If search-session processing is active 



Technical Report  14 
 

in the KLRT code, processing continues there (see next section). If not, the html of the search 
results page is immediately recorded in the search log.  

3.1.c.ii.(d) Search-session processing. 
For studies of in situ search, where there are no search task assignments, it may be helpful to 
record information about a user’s naturally occurring search objectives, or other desired 
information. Activities associated with a single search objective constitute a search session. 
Generally, if a user doesn’t submit a new query for a period of 30 minutes or longer, it is likely 
that the next query entered will be associated with a new search objective. In log analysis, a 30-
minute interval is used to demarcate search sessions. We use the 30-minute heuristic to trigger 
a popup box that asks users for information about their search objectives. 

Search session boundaries are detected based on a timing variable, "_lasttime_purpose"; the 
value is initially zero, and it is updated with the time of the first search query submitted after 
the add-on initializes. Every time whitelist processing returns true, "_lasttime_purpose" is 
compared with the current unix time. If 30 minutes have elapsed, the search session form (see 
Figure 6) pops up, asking the user for information. Every time whitelist processing returns true, 
"_lasttime_purpose" is updated with the current time.  

Values submitted in the search session form are stored as a single string in the variable 
"_search_purpose". Immediately before the html of the search results page is recorded in the 
search log, the "_search_purpose” string is recorded in the search log.  

3.1.c.iii. Add-on events that trigger LQLT 2.1 functions   

3.1.c.iii.(a) Pause (PauseLogging event) 
When the “Pause” button is clicked, the state variable in prefs.js is set to paused, the 
start/pause buttons are reset, and the PauseLogging event is recorded in the activity log.  

3.1.c.iii.(b) Start (StartLogging event) 
When the “Start” button is clicked, the state variable in prefs.js is set to started, the start/pause 
buttons are reset, and the StartLogging event is recorded in the activity log.  

3.1.c.iii.(c) View (ViewLog event) 
When the “View” button is clicked, a two-line menu drops down and the user may select the 
activity log or the search log. When a log is selected, the associated log file is displayed in the 
active browser tab and the ViewLog event is recorded in the activity log.  

3.1.c.iv. Add-on events that trigger KLRT functions  

3.1.c.iv.(a) New Search (Searchbox event processing) 
When the New Search button is clicked, the search session form pops up (see Figure 6). The user 
has the option to complete the form and submit it, or ignore it. The timing variable 
"_lasttime_purpose" is updated with the current time, and the string variable 
"_search_purpose" is updated. Search session processing is invoked the next time a whitelist 
even occurs (see section 3.1.c.ii.c above). 

  



Technical Report  15 
 

3.1.c.iv.(b) Disable (Disable event processing) 
We added the Disable button to the toolbar to allow users to quit a research study by clicking a 
single button. When a disable event is triggered, users are asked to confirm that they want to 
disable the add-on. If the answer is positive, then the add-on deletes both log files, a file called 
"disable" is created in the user’s FF profile, and the add-on’s status is set as paused in prefs.js. As 
shown in figure 8, the Start, Pause, Disable, New Search, Upload, and Settings buttons are then 
greyed out and a disabled message is displayed. The add-on will no longer record any activity in 
either log, and it cannot be restarted, even if it is reinstalled. The only way to reactivate the add-
on is by deleting the “disable” file before the installation. 

 

Figure 8. Toolbar interface after disable  

3.2. Website. 
The KLRT control website has four components (see Figure 1, above), which are used in sequence. The 
website can be configured for remote studies, where a subject downloads and installs the add-on, or for 
in-lab studies, where the add-on is installed on machines in the lab. The website runs php with a MySQL 
database, which contains information about subjects, the structure of the study, and the subject’s status 
within the sequence of activities that define the study protocol. 

3.2.a. Website sections 

3.2.a.i. Section 1 – instructions for installing the add-on 

The first section is used only for remote studies. The primary purpose of the section is to insure the 
correct machine environment for the study, and the correct installation process for the add-on. 
Instructions for setting up the environment (e.g., instructions for turning Google Instant off) and 
downloading and installing the add-on, are presented. Users must login to the study website in order to 
reach the add-on download (L1).  

3.2.a.ii. Section 2 – instructions for assigned tasks 

This section is used for any study with assigned tasks that must be completed via the website. For 
studies conducted in the lab, where the user does not need to install the add-on, users enter the study 
website by logging in at section 2 (L2). After login, the website may trigger validation of the add-on 
installation (A). A timer may be used to test the elapsed time between the start of an add-on download 
and the start of installation validation (T1). If the test occurs after the deadline, a control action can 
occur. For example, the user may be excluded from the study, or the user may be required to download 
a new version of the add-on. 

3.2.a.iii. Section 3 – task interface and administration 

The third section controls the study protocol by administering task assignments and collecting data via 
forms. The section should be customized to meet the requirements of the study (e.g., number of tasks, 
task assignment method, time limits, form text and variables, and database connectivity). The section is 
designed to use a repeating task structure, where a sequence of pages may be used iteratively, 
according to the protocol structure. There are three basic functional pages.  

Task-administration. The task-administration page displays any values or forms required by the 
active task, which may be assigned from the protocol areas of the website database. For 



Technical Report  16 
 

protocols that use a time-limit (T3), the page may also display a count-down stopwatch. Upon 
entering section 3, the page may trigger activation of the add-on (B) or a forced start of logging 
(C). Form submission from this page may request a confirmation page. 

Task confirmation. The confirmation page allows the subject to confirm the upload, or quit the 
study without an upload. If confirmed, the page starts the log-upload and posts the form data to 
the website database. For example, this can be used to upload logs simultaneously with a form 
submission. If the subject quits, disable processing is initiated (see section 3.1.c.iv.b).  

Log upload. This page runs a non-confirmable upload of the logs (D). It also may be used to 
activate the process that disables the add-on (E). For example, this could be used to disable the 
add-on after the last task is completed. 

3.2.a.iv. Section 4 – instructions for uninstalling the add-on 

The fourth section of the site provides any instructions for the end of the study, and for uninstalling the 
add-on. For studies that don’t use assigned tasks, such as a longitudinal study of in situ search, the user 
may sign in to this section without ever using the other sections (L3). The section tests for an active 
installation of the add-on (F), with the objective of assuring that the add-on is disabled after the study is 
completed.  

3.2.b. KLRT control functions on the website 

3.2.b.i. Identify study subjects at login (L) 

When users login on the study website, after password verification, the user’s subjectID is read from the 
website database. A web page is then returned to the user, and the url of that page contains a special 
"signature#" string, followed by an encrypted subjectID. The add-on recognizes the signature string, and 
captures the encrypted subjectID, which is passed to the backend during upload, and recorded as 
"ClientSessionID" in the "tblClients" table of the backend database (see below). Also, the identification 
process checks for restart status (see section 3.2.c.ii).  

3.2.b.ii. Validate add-on installation (A) 

We want to prevent subjects from completing assigned tasks without a working installation of the add-
on. Also, in some designs it is essential to prevent the user from installing the add-on while certain pages 
of the website are open. To prevent these problems, the website can test for a valid installation of KLRT. 
The procedure uses a sequence of two triggering urls.  

The first url triggers the “start logging” function (see section 3.1.c.iii above). It is appended with 
a unique signature: an encrypted combination of the user’s “subject ID” and the current time 
stamp. The whole url is recorded in the activity log.  

The second url triggers a “start non-confirmable upload” (see section 3.1.c.ii.a). Once the upload 
is complete, the back-end parses the activity log and updates the backend database. 

In the third step, the backend database is interrogated to determine whether the unique 
signature is found. When the signature is found, a valid add-on installation is confirmed, the 
user is notified, and website processing continues. If the signature is not found, the website 
redirects to the installation instructions and issues a message to the user. Progress through the 
control website cannot continue until the installation is validated. 



Technical Report  17 
 

3.2.b.iii. Activate add-on (B) 

The add-on may be coded so that it installs in a "deactivated" state. When "deactivated", both the start 
and pause buttons do not work. Users cannot start the add-on until they sign in to the controlling 
website using their user names and passwords, which are available only to consenting research subjects. 
Once a user is logged in, a trigger page for “start add-on” is sent to the client and all buttons are 
activated (see section 3.1.c.ii.a above).  

We use this function for several purposes. First, it forces users to encounter the installation instructions 
before the add-on can be activated. Our goal is to reduce the chance that a user might inadvertently log 
and upload private information before learning about how the add-on works. Also, the function provides 
us with confirmation that the user has installed the add-on. This is particularly important for studies that 
use an unconfirmed upload trigger (see below). 

3.2.b.iv. Trigger add-on start and log clear (C) 

In order to guarantee that the add-on is active at the beginning of each experimental task, the task 
component of the website may control add-on status. In some cases, we want the add-on to be on at 
the beginning of each search task, and the urls of task-related web pages can be set as start add-on 
triggers (see section 3.1.c.ii.a, above). In studies where task assignments take more time, perhaps weeks, 
we want to minimize the risk that the add-on will be active when it is not needed, and that unnecessary 
log files will be uploaded. In this case, we set the add-on to start in a deactivated status, so that when 
any Firefox instance is initialized, the add-on starts in this status. The add-on is activated only when the 
subject successfully logs into the web site, which triggers the add-on to clear the log files and then start 
logging. 

3.2.b.v. Trigger log upload (D) 

In some experimental studies, we want log data to be uploaded as soon as a task is finished, so that 
separate log files are created for each task. In this case, task pages are set to trigger a non-confirmable 
upload (see section 3.1.c.ii.a, above). The triggering page uses a special "?submit" string, which is not 
visible to the user, and which is appended only when the page is entered directly from a prior 
controlling page. This prevents an uncontrolled, non-confirmable upload if a user restarts a task 
sequence by reloading a triggering page. 

3.2.b.vi. Trigger log clear (E) 

In most studies, we want the add-on to be disabled after all of the assigned tasks are complete. In this 
case, the url of the last page in a sequence of task pages can be set to trigger the add-on disable 
function (see section 3.1.c.ii.a, above). 

3.2.b.vii. Validate add-on uninstall (F) 

At the conclusion of a study, it may be important to verify that that add-on has been removed from a 
user’s system. The procedure for this is very similar to the "validation of add-on installation" above (see 
section 3.2.b.ii). The only difference is the processing that occurs in the third step. When the signature is 
not found, a valid add-on uninstall is confirmed, the user is notified, and website processing continues. If 
the signature is found, the website redirects to the uninstall instructions and issues a message to the 
user. Progress through the control website cannot continue until the uninstall is validated. 

  



Technical Report  18 
 

3.2.c. Other control functions 

3.2.c.i. Monitor installation timers (T) 

In order to minimize the risk that the add-on is downloaded and installed at some distant time, or by 
someone using the machine but unfamiliar with the study, we may use timers in the website. In some 
cases, we simply want to know that the add-on has been installed immediately after download. In this 
case, the elapsed time since download is checked when the installation is validated (T1). In other cases 
we want subjects to download the add-on immediately before completing assigned tasks, and the timer 
checks the elapsed time between download and the start of the task section of the website (T2). In both 
cases, when the download starts, a timestamp is recorded in the "lemur_download" field in the 
"subject" table of the website database. This field is checked by the controlling webpage, and if the 
allowed time has elapsed, the subject is eliminated from the study, and the browser is redirected to the 
directions for uninstalling the add-on.  

3.2.c.ii. Restart incomplete task-set  

During a task-based protocol, subjects may close the browser tab or window after starting a task-set, 
but before completing the set. If the browser attempts to open the task-administration page, but has 
not saved the state for restart, a page reload is requested from the server. The task-administration page 
tests for an active session as an indication that the subject is logged in. If no session is found, a redirect 
serves the login page. Upon login, the subject is identified (see section 3.2.b.i) and the identifier for the 
last active task is retrieved. If the protocol uses a time limit for task completion (T3), we also read the 
value for the remaining-time. These status values are stored in the session variable and additional task-
related data is retrieved from the database. Unless the time limit has been reached, the task-
administration page is populated with task-related values and the page is served. The task-
administration page passes the client’s unique signature, and it may also be used to trigger a start add-
on (see section 3.1.c.ii.a).  

3.3. Backend 
KLRT uses the backend of LQLT 2.1, however, we have made several modifications. The backend has 
three main components: one handles information about clients sending logs to the server, and two 
others handle parsing and storage of the activity and search logs. We discuss these below. The backend 
uses a MySQL database. Incoming logs are stored in temporary files while backend processing is 
performed. 

Each log upload creates two temporary files, an activity log and a search log. During upload, the backend 
extracts the data from the upload stream, including an encrypted unique identifier for the client. The 
identifier is stored in the backend database in the field named ClientSessionID (see below). The 
identifier may be associated with a research subject (see section 3.2.b.i) or a machine. The 
ClientSesssionID may be hardcoded in the add-on prior to installation.  

Because we use KLRT to record search activities in a large number of diverse search systems, our search 
results pages have many various formats. While LQLT 2.1 has parsers for several formats (Google, Bing, 
Yahoo, MSN, and Sogou), we obtain relatively few samples for many of the formats we capture. Because 
we don’t have parsers for these formats, we rename and store all unparsed temporary log files as 
described below. For large studies involving more than one user at a time (i.e. studies not conducted 
one-on-one in the lab), we have turned off the parsing functions on the backend (see section 4.7 below). 

  



Technical Report  19 
 

3.3.a. Client information component.  

This component runs first, and records the identity of the source of each log. Most of the code for this 
component is in a file called ClientUploadInformation.java. It captures the ClientsessionID, IP address, 
and browser type from the upload stream, and then compares this information with data in the 
"tblClient" table to look for an associated ClientID. If a ClientID is not found, a new ClientID is assigned in 
the table. The ClientID is then associated with a new LogID, which is assigned sequentially in the "tblLog" 
table.  

3.3.b. Activity log component. 

The second component runs next. It parses and stores incoming activity logs. Most of its code is in a file 
called "ActivityLogProcessingThread.java". First, it reads the event types from table "tblLogActionType" 
(see Table 2 above). It then parses the activity log and inserts corresponding information into tables 
such as "tblLogAction" and "tblLogPages" based on the event types and previous data in the tables. In 
KLRT we modified the activity log component so that it saves the raw activity log. When the parsing is 
finished, the temporary activity log is saved in a folder called "logfiles", and it is renamed "ActivityLog" 
followed by the logID that has been assigned by the first component. The temporary activity log is then 
deleted. In this component, we added new event types to “tblLogActionType” and made modifications 
to the parser for scrolling data.   

3.3.c. Search log component. 

After the second component is done, the third component runs. Its code is in a file called 
"SearchLogProcessingThread.java". This component parses the search log and inserts corresponding 
information into tables such as "tblSearchResults" and "tblSearchPages". The information includes the 
ID of the search page (note that this is not the "SearchPageID" field in "tblSearchPages" table, but the 
panel ID), the url address of the search page, and the length of source code of the search page. In 
addition, parsers for Google, Bing, Yahoo, MSN, and Sogou produce detailed information for each results 
page, such as each item, the rank of each item, and so on. In KLRT we modified the search log 
component so that it saves the raw search log. After finishing the parsing, this component copies the 
temporary search log to the "logfiles" folder and renames the file "SearchLog" followed by the logID 
assigned by component one. Then it deletes the temporary search log. We modified the code in this 
component so that it parses and stores fields captured in the search purpose popup box. We also 
modified the code so that raw search results pages are not stored in a table, as is done in LQLT 2.1. 

4. CHALLENGES AND FUTURE WORK 
While the current version of KLRT meets many of our objectives, several major challenges remain, and 
we have the inevitable list of enhancements we have not yet implemented. We discuss these below.  

4.1. AJAX stream capture. 
Among our biggest challenges, the greatest is the need for a process that can listen to an AJAX stream 
and capture the final resultant html display. This issue is most obvious in the AJAX interface functionality 
of Google Instant. Currently, if Google Instant is on, KLRT cannot capture Google query strings and 
search results pages. The problem extends, however, to other search systems such as Dialog. We expect 
that AJAX will become more common in search systems, including library and database systems. For 
KLRT to continue to be useful this problem must be solved.  

In order to get around this problem, before subjects install the add-on we instruct them to turn Google 
Instant off. In pilot testing, we found that most people were not aware of Google Instant, even if it was 



Technical Report  20 
 

on. Generally, they were also unfamiliar with changing settings for Google. We monitor uploaded data 
to check for evidence of search activity where there are no search urls or results pages in the logs and 
send reminders to turn Google Instant off.  

4.2. Smarter blacklist processing – keyword-based filters 
KLRT lacks a robust and efficient user-controlled blacklist process. The blacklist process in LQLT 2.1 
provides a pop-up window that allows users to specify private information that should not be recorded 
in the logs. LQLT 2.1 blacklist processing scans whitelist urls for blacklist values, and when they are 
found, processing  attempts to overwrite the values before the url is logged. Our specifications for black 
list processing are different; we require that the user be able to exclude an entire url from logging if 
blacklist values are found in the url. This is akin to blacklist processing currently in KLRT, in which we 
exclude urls containing the strings “mail” or “https”. 

In the current version of KLRT, we have disabled the blacklist interface, as we have several problems 
that remain to be solved. We have not yet developed a reliable process for detecting blacklist stings in 
urls. This requires a more sophisticated JavaScript string handler. Also, a single version of the current 
blacklist values must be available to every instance of FF in time for blacklist processing; this is not 
supported in LQLT 2.1, so a user’s changes to the blacklist are not applied to other browser instances 
that are active at the time of the change. Meeting this requirement requires modification to the 
processes for maintaining state and to the processing flow triggered by LoadCap.      

4.3. Extracting results lists from pages using frames 
The current version of KLRT does not have a process for extracting html from search results pages that 
use frames. We plan to address this need on a system-by-system basis.  

4.4. Parsers for library and database search systems 
The current whitelist contains over 170 search systems. We are in the process of developing parsers for 
systems logged with highest frequencies. We plan to make the parsers available as they are tested.   

4.5. Tab and copy event processing for Firefox 4.0+  
The current version of the add-on is designed to work on FF 3.6. While it is possible to install and run the 
current version on FF 4.0 or greater, tab and copy events are not logged. Implementation of the fix is 
forthcoming. 

4.6. A modular, configurable version of the toolkit 
Ideally, KLRT should be truly configurable, so that researchers with minimal programming resources can 
implement various study designs. This enhancement would require development of configurable code, 
and an interface for setting configuration parameters for the add-on and the website.  

4.7. Modify backend for multi-thread update 
The LQLT 2.1 backend does not support mutli-thread processes. For studies where multiple users submit 
simultaneous log uploads, this functionality is needed to keep the backend running. For larger studies, 
the current work-around is to turn off the log parsers, and simply record log-uploads and rename the 
saved raw logs for parsing and processing at a later time. 

  



Technical Report  21 
 

5. References 
Atterer, R., Wnuk, M., & Schmidt, A. (2006). Knowing the user's every move: user activity tracking for 
website usability evaluation and implicit interaction. Paper presented at the Proceedings of the 15th 
International Conference on World Wide Web, Edinburgh, Scotland.  

Bierig, R., Gwizdka, J. & Cole, M. (2009). A User-centered experiment and logging framework for 
interactive information retrieval. Paper presented at the Workshop on Understanding the User at the 
32nd Annual ACM SIGIR Conference on Research and Development on Information Retrieval, Boston, 
MA.  

Baker, L. (2004). Google Partners with RealPlayer for toolbar distribution. Search Engine Journal. 
Retrieved from  http://www.searchenginejournal.com/google-partners-with-realplayer-for-toolbar-
distribution/467/  

Capra, R. (2009). HCI Browser: a tool for studying web search behavior. Paper presented at the 73rd 
ASIS&T Annual Meeting on Navigating Streams in an Information Ecosystem, Pittsburgh, Pennsylvania.  

Cartright, M.-A., White, R. W., & Horvitz, E. (2011). Intentions and attention in exploratory health 
search. Paper presented at the 34th Annual International ACM SIGIR Conference on Research and 
Development on Information Retrieval, Beijing, China.  

Choo, C. W., Detlor, B., & Turnbull, D. (2000). Information seeking on the Web: An integrated model of 
browsing and searching. First Monday, 5(2).  

Claypool, M., Le, P., Wased, M., & Brown, D. (2001). Implicit interest indicators. Paper presented at the 
Proceedings of the 6th international conference on Intelligent user interfaces, Santa Fe, New Mexico.  

Downey, D., Dumais, S., & Horvitz, E. (2007). Models of searching and browsing: languages, studies, and 
applications. Paper presented at the Proceedings of the 20th international joint conference on Artificial 
intelligence, Hyderabad, India.  

Downey, D., Dumais, S., T, Liebling, D., & Horvitz, E. (2008). Understanding the relationship between 
searchers' queries and information goals. Paper presented at the 17th Annual International ACM SIGIR 
Conference on Research and Development on Information Retrieval, Napa Valley, California, USA.  

Feild, H., A, Allan, J., & Jones, R. (2010). Predicting searcher frustration. Paper presented at the 33rd 
Annual International ACM SIGIR Conference on Research and Development on Information Retrieval, 
Geneva, Switzerland.  

Feild, H. A., Allan, J., & Glatt, J. (2011). CrowdLogging: distributed, private, and anonymous search 
logging. Paper presented at the 34th Annual International ACM SIGIR Conference on Research and 
Development on Information Retrieval, Beijing, China.  

Fenstermacher, K. D., & Ginsburg, M. (2003). Client-side monitoring for Web mining. Journal of the 
American Society for Information Science and Technology, 54(7), 625-637.  

Fox, S., Karnawat, K., Mydland, M., Dumais, S., & White, T. (2005). Evaluating implicit measures to 
improve web search. ACM Transactions on Information Systems, 23(2), 147-168.  

http://www.searchenginejournal.com/google-partners-with-realplayer-for-toolbar-distribution/467/
http://www.searchenginejournal.com/google-partners-with-realplayer-for-toolbar-distribution/467/


Technical Report  22 
 

Guo, Q., White, R. W., Zhang, Y., Anderson, B., & Dumais, S., T. (2011). Why searchers switch: 
understanding and predicting engine switching rationales. Paper presented at the 34th Annual 
International ACM SIGIR Conference on Research and Development on Information Retrieval, Beijing, 
China.  

Huang, J. (2011). On the Value of Page-Level Interactions in Web Search. 5thWorkshop on Human-
Computer Interaction and Information Retrieval (HCIR ’11), Mountain View, CA. 

Jansen, B. J., Ramadoss, R., Zhang, M., & Zang, N. (2006). Wrapper: An application for evaluating 
exploratory searching outside of the lab. Paper presented at the Workshop on Evaluating Exploratory 
Search Systems at the 29th Annual International ACM SIGIR Conference on Research and Development 
on Information Retrieval, Seattle, WA.  

Kellar, M., Watters, C., & Shepherd, M. (2007). A field study characterizing Web-based information-
seeking tasks. Journal of the American Society for Information Science and Technology, 58(7), 999-1018.  

Kelly, D. (2006). Measuring online information seeking context, Part 1: Background and method. Journal 
of the American Society for Information Science and Technology, 57(13), 1729-1739.  

Kumar, R., & Tomkins, A. (2010). A characterization of online browsing behavior. Paper presented at the 
Proceedings of the 19th international conference on World wide web, Raleigh, North Carolina.  

Lemur (2010). Community Query Log Project Results. Retrieved from http://lemurstudy.cs.umass.edu/ 

Matthijs, N., & Radlinski, F. (2011). Personalizing web search using long term browsing history. Paper 
presented at the Fourth ACM international conference on Web search and data mining, Hong Kong, 
China.  

Reeder, R. W., Pirolli, P., & Card, S. K. (2001). WebEyeMapper and WebLogger: tools for analyzing eye 
tracking data collected in web-use studies. Paper presented at the CHI '01 extended abstracts on Human 
factors in computing systems, Seattle, Washington.  

Russell, D. M., & Grimes, C. (2007, Jan. 2007). Assigned tasks are not the same as self-chosen Web 
search tasks. Paper presented at the 40th Hawaii International Conference on System Sciences,Big Island, 
HI. 

Russell, D. M., & Oren, M. (2009). Retrospective cued recall: A method for accurately recalling previous 
user behaviors. Paper presented at the 42nd Hawaii International Conference on System Sciences, Big 
Island, HI. 

Singla, A., White, R., & Huang, J. (2010). Studying trailfinding algorithms for enhanced web search. Paper 
presented at the Proceedings of the 33rd Annual International ACM SIGIR Conference on Research and 
Development on Information Retrieval,, Geneva, Switzerland.  

Singer, G., Norbisrath, U., Vainikko, E., Kikkas, H., & Lewandowski, D. (2011). Search-logger analyzing 
exploratory search tasks. Paper presented at the 2011 ACM Symposium on Applied Computing, 
TaiChung, Taiwan. 



Technical Report  23 
 

Smith, C.L. (2011). Conditions of trust for completely-remote methods: A proposal for collaboration. 
5thWorkshop on Human-Computer Interaction and Information Retrieval (HCIR ’11), Mountain View, CA. 

Toms, E. G., Freund, L., & Li, C. (2004). WiIRE: the Web interactive information retrieval experimentation 
system prototype. Information Processing and Management, 40(4), 655-675. doi: 
10.1016/j.ipm.2003.08.006 

White, R. W., & Drucker, S. M. (2007). Investigating behavioral variability in web search. Paper presented 
at the Proceedings of the 16th international conference on World Wide Web, Banff, Alberta, Canada.  

White, R. W., Dumais, S. T., & Teevan, J. (2009). Characterizing the influence of domain expertise on web 
search behavior. Paper presented at the Proceedings of the Second ACM International Conference on 
Web Search and Data Mining, Barcelona, Spain.  

White, R. W., & Morris, D. (2007). Investigating the querying and browsing behavior of advanced search 
engine users. Paper presented at the Proceedings of the 30th annual international ACM SIGIR conference 
on Research and development in information retrieval, Amsterdam, The Netherlands.  

 



Technical Report  24 
 

Appendix 1. 

Table 1. Studies Using Client-side Logging (includes Technical Reports)   

# authors year 
# 

subjects 
time 

period installation type of log 
type of 

task privacy provisions 

1 Atterer, Wnuk, & 
Schmidt

9
 

2006 12 lab 
session 

in lab browser 
events 

assigned consent to proxy connection 

2 Capra 2009 n/a n/a in lab browser 
events 

n/a n/a 

3 Cartright, White & 
Horvitz 

2011 660,000 6 
months 

commercial 
toolbar 

clickstream in situ no https or intranet recorded 

4 Choo & Turnbull 2000 34 2 weeks by researcher, 
subject machine 

browser 
events 

in situ logging on/off, view log (see Turnbull) 

5 Claypool, et al. 2001 75 11 days in lab browser 
events 

in situ none described 

6 Downey, Dumais, & 
Horvitz 

2007 250,000 3 weeks commercial 
toolbar 

clickstream in situ none described other than consent 

7 Downey, Dumais, 
Liebling & Horvitz 

2008 206,000 2 weeks commercial 
toolbar 

clickstream in situ no https or intranet recorded 

8 Feild, Allan, Glatt 2011 ≈30 2 weeks by subject on 
own machine 

browser 
events 

in situ turn log on/off, view log, delete log, 
anonymization, upload approval 

9 Feild, Allan, Jones 2010 30 lab 
session 

in lab browser 
events 

assigned n/a 

10 Fenstermacher & 
Ginsburg

10
 

2003 n/a n/a n/a application 
events 

in situ n/a 

11 Fox, et al. 2005 146 6 weeks by subject on 
work machine 

browser 
events 

in situ turn log on/off 

12 Guo, et al. 2011 216 4 weeks by subject on 
own machine 

browser 
events 

in situ no https or intranet recorded 

13 Huang
6
 2011 n/a n/a on server of 

target system 
browser 
events 

in situ n/a 

14 Jansen, et al. 2006 4 7 days not specified browser 
events 

in situ explicit activation of logging 

                                                           
9
 proof-of-concept study 

10
 proposed system 



Technical Report  25 
 

# authors year 
# 

subjects 
time 

period installation type of log 
type of 

task privacy provisions 

15 Kellar, Watters, & 
Shepard 

2007 21 1 week by researcher, 
subject machine 

browser 
events 

in situ log entry review and deletion  

16 Kelly 2006 7 14 
weeks 

by researcher on 
study machine 

application 
events 

in situ subjects used laptop supplied by researcher 

17 Kumar & Tomkins 2010  1 week commercial 
toolbar 

click stream in situ none described other than consent 

18 Lemur Project 2009 n/a 12 
months 

by subject on 
own machine 

browser 
events 

in situ turn log on/off, whitelist, blacklist, view log, 
delete log, control of log upload 

19A Matthijs & Radlinski 
(phase 1, sect. 3) 

2011 50 3 
months 

by subject on 
own machine 

click stream in situ random unique identifier, no https, dynamic 
pages excluded 

19B Matthijs & Radlinski 
(phase 3, sect. 6) 

2011 41 2 
months 

by subject on 
own machine 

click stream in situ random unique identifier 

20 Reeder, Pirolli & Card 2001 n/a n/a in lab browser 
events 

n/a n/a 

21 Russell & Grimes 2007 401 2 weeks not specified browser 
events 

assigned 
tasks 

no https 
 

22A Russell & Oren
11

 2009 12 1 
month 

by researcher, 
subject machine 

browser 
events 

in situ no https, log entry review and edit, screen 
capture on/off, url blacklist edit, whitelist of 
captured urls, control of log upload 

22B Russell & Oren
7
 2009 8 1 week by researcher, 

subject machine 
browser 
events 

in situ same as # 11 

23 Singer, et al. 2011 10 4 weeks by subject on 
own machine 

browser 
events 

assigned 
tasks 

pause/start task/logging 

24 Singla, White, & 
Huang 

2010 millions 9 
months 

commercial 
toolbar 

clickstream in situ no https or intranet recorded 

25 Toms, Freund & Li 2004 24 lab 
session 

in lab queries and 
page-saves 

assigned 
tasks 

n/a 

26 White & Drucker 2007 2,527 5 
months 

commercial 
toolbar 

clickstream in situ no identifiers assigned 

27 White, Dumais & 
Teevan 

2009 270,000 3 
months 

commercial 
toolbar 

clickstream in situ no https or intranet recorded 

28 White & Morris 2007 188,000 13 
weeks 

commercial 
toolbar 

clickstream in situ none described other than consent 

                                                           
11

 study of usage of personalized homepages  



Technical Report  26 
 

Appendix 1. 

Table 2. System Components 

source of  
supplemental data 

data collected 

clicks and interaction, collected via: clickstream via browser 
add-on 

w/out interaction data 
system-wide 
application 

injected client-
side script custom browser browser add-on 

proxy server 
[16] a, plus html of 
requested pages 

   [19A] a, plus html of 
requested pages 
[19B] a,  

website (with proxy)     [25] a 

website (no proxy)    [8]   

integrated/application 

[10]   [5] page evaluations  
[15] c, task categories and 
descriptions 
[21] a, task descriptions 

[2]*  
 [9] b, sensors, feedback

12
 

[11] a, task descriptions and 
evaluation

13
 

[12] a, switching reasons 
[22A] b, screen shots 
[22B] b, screen shots 
[23] a, task descriptions

14
 

 

no other data 

 [1] a 
[8] a *  
[13] a * 
 

 [4] 
15

 c 
[14] a  
[18] b 
[20] 

11
 c 

[3] a  
[6] a 
[7] a 
[17] a 
[24] a  
[26] a 
[27] a 
[28] a 

a – collected by write to server 
b – collected by batch upload 
c – collected by researcher from machine                                                                                                                              
* proposed system or no study reported  

                                                           
12

 for each task: expectations, satisfaction, frustration, evaluation; physical sense data 
13

 explicit evaluation for each search objective, and for each page visited from a SERP 
14

 pre-experiment demographics, and for each assigned task, pre- and post-search questionnaires  
15

 early client-side logging systems ran alongside the browser to detect browser events 



Technical Report  27 
 

Appendix 1. 

Table 3. Study Design and System Deployment 

Tasks studied: 

Logging software installed: 

on subject’s own machine … 

in lab other  …with commercial tool-bar …by research subject …by researcher 

assigned tasks 
 [23] task descriptions 

 
 [1]**  

[9]  
[25] 

[21] website 
script 

in situ 
 w/supplemental data 

 [11]  
[12]  

[5] 
[15] 
[16] 

  

in situ  
unobtrusive 

[3]  
[6] 
[7] 
[17] 
[24] 
[26] 
[27] 
[28] 

[8] 
[18]  
[19A] 
[19B]  
[22A] 

[4] 
[22B] 

 [14] not 
described 

** proof-of-concept study – proxy may run on a website server, or users may point their browsers to an in-stream proxy 

 


